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Abstract This paper presents a semi-analytical method for solving fractional differential equations

with strong terms like (exp, sin, cos,. . .). An auxiliary parameter is introduced into the well-known

Picard’s method and so called controlled Picard’s method. The proposed approach is based on a

combination of controlled Picard’s method with Simpson rule. This approach can cover a wider

range of integer and fractional orders differential equations due to the extra auxiliary parameter

which enhances the convergence and is suitable for higher order differential equations. The pro-

posed approach can be effectively applied to Bratu’s problem in fractional order domain to predict

and calculate all branches of problem solutions simultaneously. Also, it is tested on other fractional

differential equations like nonlinear fractional order Sine-Gordon equation. The results demon-

strate reliability, simplicity and efficiency of the approach developed.
� 2017 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fractional calculus and fractional differential equations

(FDEs) have been considered as a source of many recent
innovations during the last few decades, where the extra
fractional-order parameters exhibit more flexibility to interpret

many natural phenomena in different fields (Das and Pan,

2012; Monje et al., 2010; Petras, 2011; Podlubny, 1999;
Semary et al. 2016).

Many approximations based on semi-analytical and numer-
ical techniques were proposed to solve linear and nonlinear
fractional- order differential equations that exist in many phys-
ical and engineering problems (Baskonus and Bulut, 2015;

Baskonus and Bulut, 2016; Bulut et al. 2016; Chen et al.,
2015, Diethelm et al., 2002; Gencoglu et al. 2017; Hashemi
and Baleanu, 2016; Keshavarz et al. 2014; Parvizi et al.,

2015). Picard’s method introduced by Émile Picard in 1890,
is a basic tool for proving the existence of solutions of initial
value problems regarding ordinary first order differential

* Corresponding author.

E-mail addresses: mourad.semary@bhit.bu.edu.eg, mourad.semary@

yahoo.com (M.S. Semary).

Peer review under responsibility of University of Bahrain.

Journal of the Association of Arab Universities for Basic and Applied Sciences (2017) 24, 247–253

University of Bahrain

Journal of the Association of Arab Universities for

Basic and Applied Sciences
www.elsevier.com/locate/jaaubas

www.sciencedirect.com

http://dx.doi.org/10.1016/j.jaubas.2017.06.001
1815-3852 � 2017 University of Bahrain. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



equations. Recently, Picard’s method was used to analyze and
solve the integral and differential equations with different def-
initions of the derivative (Azarnavid et al., 2015; El-Sayed

et al., 2014; Micula, 2015; Rontó et al. 2015; Salahshour
et al., 2015; Vazquez-Leal et al., 2015). However, this method
cannot provide us with a simple way to adjust and control the

convergence region and the rate of giving an approximate
series.

In this paper, we construct Picard’s method with an auxil-

iary parameter h which proves very effective in controlling
the convergence region of an approximate solution. Also, the
combination between Picard’s method with an auxiliary
parameter and Simpson rule is proposed to solve nonlinear

fractional differential equations in the form:

DbuðtÞ þN½uðtÞ� ¼ 0: uðiÞð0Þ ¼ bi;

i : 0ð1Þn� 1; n� 1 < b 6 n; ð1Þ
where N½uðtÞ� contains strong nonlinear terms like (exp, sin,

cos,. . .). The fractional order derivative (Db) in Caputo sense
defined by (Podlubny, 1999):

DbuðtÞ ¼ 1

Cðn� bÞ
Z t

0

ðt� sÞn�b�1
uðnÞðsÞds; n� 1 < b < n;

ð2Þ
and (Jb) is the Riemann–Liouville fractional integral operator
of order b P 0 and defined by:

JbuðtÞ ¼ 1

CðbÞ
Z t

0

ðt� sÞb�1
uðsÞds: ð3Þ

The important property of the Caputo fractional derivative
is:

JbDbuðtÞ ¼ uðtÞ �
Xn�1

k¼0

uðkÞð0Þ t
k

k!
; n� 1 < b 6 n: ð4Þ

2. The methodology

We apply the Riemann–Liouville integral of order b (Jb) on
Eq. (1) and after making use of the property (4), we get the
integrated form of Eq. (1), namely

uðtÞ ¼
Xn�1

k¼0

uðkÞð0Þ t
k

k!
� JbN½uðtÞ�; ð5Þ

where uðkÞð0Þ ¼ bk; k ¼ 0; 1; ::; n� 1. Applying Picard’s method
to the integral Eq. (5), the solution can be reconstructed as
follows:

umþ1ðtÞ ¼
Xn�1

k¼0

bk
tk

k!
� 1

CðbÞ
Z t

0

ðt� sÞb�1
N½umðsÞ�ds; m P 0:

ð6Þ
Adding and subtracting the term 1

CðbÞ
R t

0
ðt� sÞb�1

DbumðsÞds
in the right-hand side of (6), the iterative formula (6) becomes:

umþ1ðtÞ ¼
Xn�1

k¼0

bk
tk

k!
� 1

CðbÞ
Z t

0

ðt� sÞb�1fDbumðsÞ

þN½umðsÞ�gdsþ 1

CðbÞ
Z t

0

ðt� sÞb�1
DbumðsÞds: ð7Þ

Using Caputo fractional order derivative (4), then Eq. (7)
becomes:

umþ1ðtÞ ¼
Xn�1

k¼0

bk
tk

k!
� 1

CðbÞ
Z t

0

ðt� sÞb�1fDbumðsÞ

þN½umðsÞ�gdsþ umðtÞ �
Xn�1

k¼0

uðkÞm

tk

k!
: ð8Þ

The successive approximation umðtÞ must satisfy the initial

conditions, for that uðkÞm ¼ bk and the iterative formula (8)

becomes:

umþ1ðtÞ ¼ umðtÞ � 1

CðbÞ
Z t

0

ðt� sÞb�1fDbumðsÞ

þN½umðsÞ�gds: ð9Þ
The property (4) is right for the integer order case and one

can prove it easily using integration by parts. So, it should be
emphasized that the iteration formula (9) is suitable to solve

the problem (1) for integer and fractional orders. The varia-
tional iteration method (VIM) is one of the famous techniques
used to solve linear and nonlinear differential equations

(Ghaneai and Hosseini, 2015; He, 1999; Wazwaz, 2009a;
Semary and Hassan, 2015). To solve the integer order differen-
tial Eq. (1) by the variational iteration method (He, 1999;

Wazwaz, 2009a), one can construct an iteration formula for
the problem (1) as follows:

umþ1 ¼ um þ
Z t

0

kðsÞðDnumðsÞ þN½umðsÞ�Þds; ð10Þ

where kðsÞ is a general Lagrange multiplier and it is equal

� ðt�sÞn�1

n�1!
(Wazwaz, 2009a).

Remark: The Picard iterative formula (9) is the same varia-
tional iterative formula generated by the variational iteration
method (10) when b ¼ n and the general Lagrange multiplier

kðsÞ ¼ � ðt� sÞn�1

CðnÞ :

2.1. Controlled Picard’s method with Simpson rule

We consider the nonlinear fractional order differential Equa-
tion (1) in the form:

F½t; uðtÞ; b� ¼ DbuðtÞ þN½uðtÞ� ¼ 0: ð11Þ

Multiply h to both sides in Eq. (11) to become:

hF½t; uðtÞ; b� ¼ 0; ð12Þ
where h is an auxiliary parameter. Adding and subtracting

DbuðtÞ from the left-hand side of (12) to become in the form:

DbuðtÞ þ hF½t; uðtÞ; b� �DbuðtÞ ¼ 0; ð13Þ
and setting N1ðt; uÞ ¼ hF½t; uðtÞ; b� �DbuðtÞ, the Eq. (13) is

given by:

DbuðtÞ þN1ðt; uÞ ¼ 0: ð14Þ
Appling the Picard iteration Eq. (9) to the equation (14), we

get:
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umþ1ðtÞ ¼ umðtÞ � 1

CðbÞ
Z t

0

ðt� sÞb�1fDbumðsÞ

þN1ðs; umÞgds; ð15Þ

and replace N1ðs; umÞ by hF½s; umðtÞ� �DbumðsÞ in Eq. (15),
then the iteration formula with an auxiliary parameter for

the problem (11) is given by:

umþ1ðtÞ ¼ umðtÞ � h

CðbÞ
Z t

0

ðt� sÞb�1fDbumðsÞ

þNðs; umÞgds: ð16Þ
Using the important property (4), the iteration formula (16)

becomes:

umþ1 ¼ um � h um �
Xn�1

k¼0

uðkÞm ð0Þ t
k

k!

 !
� hIðtÞ; ð17Þ

where IðtÞ ¼ R t

0

ðt�sÞb�1

CðbÞ Nðs; umÞds. If the term Nðs; umÞ contains
powerful terms like (exp, sin, cos,. . .) it is difficult to obtain the

value of IðtÞ exactly. Therefore, we can approximate the value
of IðtÞ using composite Simpson rule (Atkinson, 1989). The
rule is as follows:

IðtÞ ¼
Z t

0

yðsÞds � t

6n
y0 þ y2n þ

Xn
i¼1

4y2i�1 þ
Xn�1

i¼1

2y2i

( )
; ð18Þ

where 2n is the number of subintervals and yðsÞ ¼
ðt�sÞb�1

CðbÞ Nðs; umÞ, y0 ¼ yð0Þ; y2n ¼ yðtÞ and yi ¼ y it
2n

� �
; i : 1ð1Þ2n�

1. Then the iterative formula (17) to solve the problem (1)
becomes:

umþ1ðt; hÞ ¼ um � h um �
Xn�1

k¼0

uðkÞm ð0Þ t
k

k!

 !

� th

6n
y0 þ y2n þ

Xn
i¼1

4y2iþ1 þ
Xn�1

i¼1

2y2i

( )
ð19Þ

It should be emphasized that umþ1ðt; hÞ can be computed by
symbolic software programs such as Wolfram Mathematica or
Maple, starting by an initial approximation

u0ðt; hÞ ¼
Pn�1

k¼0bk
tk

k!
or which satisfies at least the initial condi-

tions for the problem. We obtain the approximate solution
umþ1ðt; hÞ for the problem (1) but there is still an unknown
parameter in the approximate solution umþ1ðt; hÞ the auxiliary

parameter h, which should be determined. In general, by
means of the so-called h-curve (Liao, 2003), it is straightfor-
ward to choose a proper value of h which ensures that the
approximate solutions are convergent as follows. Let d 2 X,
then uðd; hÞ; u0ðd; hÞ are functions of h and the curves of these
functions versus h results in a horizontal line segment which
corresponds to the valid region of h.

3. Numerical examples

Example 1: Consider the following initial value problem:

DbuðtÞ þ etu2ðtÞ ¼ t8et þ Cð5Þt4�b

Cð5� bÞ ; 2 < b 6 3; uð0Þ

¼ u0ð0Þ ¼ u00ð0Þ ¼ 0; ð20Þ
and has the exact solution uðtÞ ¼ t4:

Applying the iteration formula (19) to equation (20) by tak-
ing n ¼ 8, we get

umþ1ðt; hÞ ¼ ð1� hÞumðt; hÞ

� th

48
y0 þ y16 þ

X7
i¼1

2y2i þ
X8
i¼1

4y2i�1

( )
; ð21Þ

where yi =
ðt�sÞb�1

CðbÞ fesu2mðsÞ � s8es � 24s4�b

Cð5�bÞg
���
s¼ it

16

8i : 0ð1Þ16: Start-
ing by u0ðt; hÞ ¼ 0 which satisfies the initial conditions (20).
Using the Wolfram Mathematica 9 software, starting with

u0ðt; hÞ: We can obtain the successive approximations
umþ1ðt; hÞ, m P 0. For example, when b ¼ 2:5, the first approx-
imate solution u1ðt; hÞ is given by:

u1ðt; hÞ ¼ 1:0004htft3: þ ð1:32� 10�11e0:0625t þ 1:528

� 10�9e0:125t þ 7:0104� 10�8e0:1875t þ 3:105

� 10�7e0:25t þ 0:00000324e0:3125t

þ 0:000006053e0:375t þ 0:0000354e0:4375t

þ 0:0000432e0:5t þ 0:000181e0:5625t

þ 0:000167e0:625t þ 0:000546e0:6875t

þ 0:000392e0:75t þ 0:000966e0:8125t

þ 0:000475e0:875t þ 0:00058e0:9375tÞt9:5g; ð22Þ
and so on, to obtain a suitable value of an auxiliary parameter
h. Fig. 1 shows h-curve for 5th-order approximation at
different values of t = d. From this figure, it is clear that the
valid region of h is [0.5, 1.5], whose line segment gives a con-

stant value u5ðd; hÞ: According to Fig. 1, we select
h ¼ 1 2 ½0:5; 1:5�. To show the accuracy of the present method
solution, the absolute error of u5ðtÞ for different values of b is

given in Fig. 2.
Example 2: Consider Bratu’s problem in fractional order

domain as follows:

DauðtÞ þ keu ¼ 0; uð0Þ ¼ uð1Þ ¼ 0; 1 < a 6 2 ð23Þ
Bratu’s problem is a nonlinear two boundary value prob-

lem with a strong nonlinear term eu and parameter k. The inte-
ger order problem appears in a number of applications such as

the fuel ignition model of the thermal combustion theory. The
model of thermal reaction process, the Chandrasekhar model
of the expansion of the Universe, questions in geometry and

Figure 1 h-curve of u5ðd; hÞ with b ¼ 2:5 of example 1.
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relativity about the Chandrasekhar model, chemical reaction
theory, radiative heat transfer and nanotechnology (Jalilian,
2010; Wazwaz, 2005; Wazwaz, 2012). For integer order case

(a ¼ 2), the analytical solution of the problem (15) can be
put in the following form (Wazwaz, 2005):

uðtÞ ¼ �2 ln
cosh ðt� 0:5Þ h

2

� �
cosh h

4

� � ; ð24Þ

where h is the solution of the equation h ¼ ffiffiffiffiffi
2k

p
cosh h

4

� �
. The

problem has no, one or two solutions when k > kc, k ¼ kc
and k < kc respectively, where the critical value kc given by

kc ¼ 3:513830719 and u0ð0Þ ¼ h tanhðh
4
Þ as shown in Fig. 3

when a ¼ 2. The integer order case was solved using the
semi-analytic and numerical techniques (Hassan and El-
Tawil, 2011; Hassan and Semary, 2013; Jalilian, 2010; Kafri
and Khuri, 2016; Semary and Hassan, 2015) using spline

method (Jalilian, 2010), variational iteration method (Semary
and Hassan, 2015), homotopy analysis method (Hassan and
El-Tawil, 2011; Hassan and Semary, 2013) and other methods.

The purpose of this paper is to solve and to show how one
can find out the existence of dual solutions for the problem

(23) in fraction order domain. To apply the present method,
suppose that u0ð0Þ ¼ c, so the problem becomes:

DauðtÞ þ keu ¼ 0; ð25aÞ
Subject to initial conditions

uð0Þ ¼ 0; u0ð0Þ ¼ c; ð25bÞ
with additional forcing condition

uð1Þ ¼ 0: ð26Þ
Now, we apply the present method on equation (25) by tak-

ing n ¼ 4, thus the iterative formula (19) becomes:

umþ1ðt; c; hÞ ¼ ð1� hÞum þ hct

� th

24
y0 þ y8 þ

X3
i¼1

2y2i þ
X4
i¼1

4y2i�1

( )
; ð27Þ

where yi =
ðt�sÞa�1

CðaÞ fkeumðs;hÞg
���
s¼it

8

8i : 0ð1Þ8: Using the initial solu-

tion u0ðtÞ ¼ ct� kta

Cðaþ1Þ � kctaþ1

Cðaþ2Þ which satisfies the initial condi-

tion (25b) which can be used to obtain the mth-successive
approximations (27). The first approximation solution
u1ðt; c; hÞ is given by:

u1ðt; c; hÞ ¼ 1

315CðaÞ 2
�1�3afðt; c; hÞhtak

þ ð�1þ hÞtakCð2þ aÞ þ ctCð1þ aÞðð�1þ hÞtakþ Cð2þ aÞÞ
Cð1þ aÞCð2þ aÞ ;

ð28aÞ

fðt; c; hÞ ¼ �1685ae
�

3
8ð Þa tak
C½1þa� þ3

8ct 1�
3
8ð Þa tak
C½2þa�

� �

� 2803ae
�

5
8ð Þa tak
C½1þa� þ5

8ct 1�ð5
8
Þa tak

C½2þa�

� �

� 10521þae
�

3
4ð Þa tak
C½1þa� þ3

4ct 1�
3
4ð Þa tak
C½2þa�

� �

� 840e
�

7
8ð Þa tak
C½1þa� þ7

8ct 1�
7
8ð Þa tak
C½2þa�

� �

� 1054ae
�2�a tak

C½1þa�þ1
2ct 1�2�a tak

C½2þa�

� �

� 3521þa3ae
�4�a tak

k½1þa� þ1
4
ct 1�4�a tak

C½2þa�

� �

� 1207ae
1
8 ct�8�a takðctC½1þa�þ8C½2þa�Þ

C½1þa�C½2þa�

� �
; ð28bÞ

and so on. Therefore the equation (26), with the help of forcing
condition uð1Þ ¼ 0, becomes

uð1Þ ffi umþ1ð1; c; hÞ ¼ 0; ð29Þ
According to the above equation, in Fig. 4 the c as a

function of auxiliary parameter h, has been plotted in the h
range [0, 2] implicitly, for a ¼ 1:9 and different values of k.
Two c-plateaus (two line segments giving constant values of
c) can be identified in this figure, this means that there are
two solutions for each value of k and the method is convergent

when h ¼ 1. In general, the multiplicity curves for different val-
ues of the fractional order a are shown in Fig. 3. It is clear
from this figure the approximate solution when a ¼ 2 is fully

consistent with the exact solution. Also, the problem in
fractional order domain has no, one or two solutions when
k > kc, k ¼ kc k < kc respectively, where the critical value kc

Figure 2 Absolute error of solution by proposed method of

example 1.

Figure 3 The multiplicity curve of the Bratu’s problem (23).
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is shown in Fig. 5 and summarized in Table 1 for different val-

ues of a: For a ¼ 2, the exact values of u0ð0Þ from the analytic
solution (24) are 2.319602 and 6.103 for k = 3. By the present
method, the approximate values of u0ð0Þ are 2:3197 and 6.105.
To show the accuracy of these dual approximate solutions

when a ¼ 2, the absolute errors for first and second solutions
are shown in Figs. 6 and 7, respectively. Also, the approximate
values of u0ð0Þ when a ¼ 1:9 and k ¼ 3 are 2:6325 and 6.285. In

this case the problem solutions are shown in Fig. 8.

Example 3: Consider the nonlinear Sine-Gordon equation
in fraction order domain as follows:

@auðt; xÞ
@ta

� uxx þ sinðuÞ ¼ 0; 1 < a 6 2; ð30aÞ

with initial conditions

uðx;0Þ ¼ 0; utðx;0Þ ¼ 4sechðxÞ ð30bÞ
The sine-Gordon equation appears in a number of applica-

tions such as the propagation of fluxons in Josephson junc-

Figure 4 h-curve (29) with m ¼ 4, a ¼ 1:9 when k ¼ 2 (red color)

and k ¼ 3 (black).

Figure 5 The value of critical k against the fractional order a.

Table 1 The value of kc for different values of a:

a kc kc exact

2 3.5140 3.5138

1.95 3.4488 –

1.9 3.4015

1.85 3.3739

1.8 3.3693

Figure 7 Absolute error for the second branch solution with

a ¼ 2.

Figure 8 The proposed method solutions of Bratu’s problem.

Figure 6 Absolute error for the first branch solution with a ¼ 2.
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tions between two superconductors, nonlinear optics, solid
state Physics, dislocations in crystals, stability of fluid motions,
the motion of a rigid pendulum attached to a stretched wire

and in the study of the differential geometry (Dodd et al.
1982; Wazwaz, 2009b; Whitham, 1999). For integer order case
a ¼ 2, The exact solution is given by (Hassan and El-Tawil,

2012; Yousif and Mahmood, 2017):

uEðx; tÞ ¼ 4tan�1ðt sech xÞ ð31Þ
Applying the iteration formula (19) to equation (30) by tak-

ing n ¼ 1, we get

umþ1ðt;x;hÞ ¼ ð1� hÞum þ 4ht sech x� th

6
fy0 þ 4y1 þ y2g ð32Þ

where yi =
ðt�sÞa�1

CðaÞ f� @2

@x2
umðs; xÞ þ sinðumÞg

���
s¼it

2

8i : 0; 1; 2. Using

u0ðt; x; hÞ ¼ 4t sech x, then the first approximation solution is

given by:

u1ðt; x; hÞ ¼ 4t sech x

� 1:33e�0:69ahtaðsinð2t sech xÞ � 2tð�sech3xþ sechx tanh2xÞÞ
CðaÞ

ð33Þ

Fig. 9 shows a h-curve when a ¼ 1:2 and a ¼ 2. It is clear
from this figure the method is convergent when h ¼ 1. Figs. 10

and 11 show the solution for the problem when a ¼ 1:2 and
a ¼ 2. Finally, Fig. 12 shows the absolute error when a ¼ 2.

4. Conclusions

In this paper, a controlled Picard’s method is introduced based
on the traditional Picard’s method by adding an auxiliary

parameter. By combining controlled Picard’s method and the
Simpson rule, a new computational method is presented for
solving fractional differential equations with strongly nonlin-

ear terms. The proposed approach provides a simple way to
adjust and control the convergence region of approximate
solution. The proposed approach succeeded in detecting dual
solutions to Bratu’s problem at the same time. The scheme is

tested on three fractional order differential equations with dif-
ferent classes. The results demonstrate reliability and efficiency
of the approach developed.

Conflict of interest

The authors have no conflict of interest.

Figure 9 h-curve with 5th approximation of iteration formula

(32).

Figure 10 The Sin-Gordon problem solution when a ¼ 2 and 1.2.

Figure 11 The Sin-Gordon problem solution with a ¼ 1:2.

Figure 12 The absolute error when a ¼ 2 and x ¼ 5 of example 3.

252 M.S. Semary et al.



References

Atkinson, K.E., 1989. An Introduction to Numerical Analysis. John

Wiley & Sons.

Azarnavid, B., Parvaneh, F., Abbasbandy, S., 2015. Picard-reproduc-

ing kernel hilbert space method for solving generalized singular

nonlinear Lane-Emden type equations. Math. Modell. Anal. 20 (6),

754–767.

Baskonus, H.M., Bulut, H., 2015. On the numerical solutions of some

fractional ordinary differential equations by fractional Adams-

Bashforth-Moulton method. Open Math. 13 (1), 547–556.

Baskonus, H.M., Bulut, H., 2016. Regarding on the prototype

solutions for the nonlinear fractional-order biological population

model. AIP Conf. Proc. 1738, 290004.

Bulut, H., Yel, G., Baskonus, H.M., 2016. An application of improved

bernoulli subequation function method to the nonlinear time-

fractional burgers equation. Turkish J. Math. Comput. Sci. 5, 1–17.

Chen, Y., Ke, X., Wei, Y., 2015. Numerical algorithm to solve system

of nonlinear fractional differential equations based on wavelets

method and the error analysis. Appl. Math. Comput. 251, 475–488.

Das, S., Pan, I., 2012. Fractional Order Signal Processing: Introduc-

tory Concepts and Applications. Springer.

Diethelm, K., Ford, J.N., Freed, A.D., 2002. A predictor-corrector

approach for the numerical solution of fractional differential

equations. Nonlinear Dyn. 29 (1), 3–22.

Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C., 1982. Solitons

and Nonlinear Wave Solutions. Academic, London.

El-Sayed, A.M.A., Hashem, H.H.G., Ziada, E.A.A., 2014. Picard and

Adomian decomposition methods for a quadratic integral equation

of fractional order. Comput. Appl. Math. 33 (1), 95–109.

Gencoglu, M.T., Baskonus, H.M., Bulut, H., 2017. Numerical

simulations to the nonlinear model of interpersonal Relationships

with time fractional derivative. AIP Conf. Proc. 1798, 020103.

Ghaneai, H., Hosseini, M.M., 2015. Variational iteration method with

an auxiliary parameter for solving wave-like and heat-like equa-

tions in large domains. Comput. Math. Appl. 69, 363–373.

Hashemi, M.S., Baleanu, D., 2016. Numerical approximation of

higher-order time-fractional telegraph equation by using a combi-

nation of a geometric approach and method of line. J. Comput.

Phys. 316, 10–20.

Hassan, H.N., El-Tawil, M.A., 2011. An efficient analytic approach

for solving two-point nonlinear boundary value problems by

homotopy analysis method. Math. Methods Appl. Sci. 34 (8), 977–

989.

Hassan, H.N., El-Tawil, M.A., 2012. A new technique of using

homotopy analysis method for second order nonlinear differential

equations. Appl. Math. Comput. 219, 708–728.

Hassan, H.N., Semary, M.S., 2013. Analytic approximate solution for

the Bratu’s problem by optimal homotopy analysis method.

Commun. Numer. Anal. 2013, 1–14.

He, J-.H., 1999. Variational iteration method – a kind of non-linear

analytical technique: some examples. Int. J. Non-Linear Mech. 34,

699–708.

Jalilian, R., 2010. Non-polynomial spline method for solving Bratu’s

problem. Comput. Phys. Commun. 181, 1868–1872.

Kafri, H.Q., Khuri, S.A., 2016. Bratu’s problem: A novel approach

using fixed-point iterations and Green’s functions. Comput. Phys.

Commun. 198, 97–104.

Keshavarz, E., Ordokhani, Y., Razzaghi, M., 2014. Bernoulli wavelet

operational matrix of fractional order integration and its applica-

tions in solving the fractional order differential equations. Appl.

Math. Model. 38, 6038–6051.

Liao, S., 2003. Beyond Perturbation: Introduction to Homotopy

Analysis Method. Chapman & Hall/CRC Press, Boca Raton.

Micula, S., 2015. An iterative numerical method for Fredholm-

Volterra integral equations of the second kind. Appl. Math.

Comput. 270, 935–942.

Monje, C.A., Chen, Y.Q., Vinagre, B., Xue, D.Y., Fileu, V., 2010.

Fractional Order Controls: Fundamentals and Application.

Springer Verlag, Berlin.

Parvizi, M., Eslahchi, M.R., Dehghan, M., 2015. Numerical solution

of fractional advection-diffusion equation with a nonlinear source

term. Numer. Algorithms 68 (3), 601–629.

Petras, I., 2011. Fractional-Order Nonlinear Systems: Modelling,

Analysis and Simulation. Springer Verlag, Berlin.

Podlubny, I., 1999. Fractional Differential Equations. Academic Press,

San Diego.
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